Biological Safety Training

Thierry Savin

October 2024

General philosophy:

- Take reasonable care of your own safety and others'
- Use equipments, chemicals, bio-agents safely
- Only undertake tasks for which adequate training has been given
- Cooperate with colleagues to ensure a healthy and safe workplace
- ► Follow the University and Department's procedures
- Report all incidents and hazards

http://www.hse.gov.uk/

- ► Responsible for the encouragement, regulation and enforcement of workplace health, safety and welfare
- Get advice from advisory committees
 e.g. Advisory Committee on Dangerous Pathogens (ACDP)
- Provides specific guidelines
- Numerous publications on the website

Central Administration

- Occupational Health and Safety Service (OHSS)
- Safety Office
 - Publications, links: http://www.admin.cam.ac.uk/offices/safety/
 - ► Training: http://www.training.cam.ac.uk/ohss/

Department of Engineering

- Department of Engineering Health & Safety: http://safety.eng.cam.ac.uk/
- ► Safety Committee & Safety Officer
- Local Safety Coordinators (LSC or "LORS")
- ► Laser, Radiation & Biological Safety Officers

Main functions:

- ► Review & approve¹ biological Risk Assessments
- Provide specialist advice on biological safety issues
 - containment, storage, security, transport, disposal, disinfection, emergency...
- Provide and arrange training for handling bio-agents
- ► Ensure biological incidents are reported and investigated

⇒ You have the main responsibility!

¹most of the time. . .

Don't do it! How can you do it safely?

Hazard: something with the potential to cause harm

Physical, chemical, ergonomic, biological

Risk: likelihood of the potential harm from hazard being realised

- likelihood of occurrence
- potential severity of the outcome
- number of people who may be affected
- type of people who may be affected

 \Rightarrow Control strategies

CoSHH: For "substances"

Control of Substances Hazardous to Health (CoSHH)

- ▶ What is the substance?
 - ► Chemicals, dusts, *biological agents*, other
- ► How will you be using it
- ► How might exposure occur
- ► Who may be exposed
- ► For how long
- ► How to dispose of it

⇒ Control strategies

HSE define a biological agent as "a micro-organism, cell culture, or human endoparasite which may cause infection, allergy, toxicity or other hazard to human health"

micro-organisms: bacteria, viruses, moulds...

Routes of infection:

- ▶ ingestion (mouth)
- inhalation via aerosols (respiratory tract)
- instillation (eyes mucosa)
- percutaneous (damaged skin)

In general, no exposure standards are set for biological agents (no dose-response relationship...)

Biological Agents Hazard Groups

When classifying a biological agent it should be assigned to one of the following groups according to its level of risk of infection to humans:

hazard group	cause human ² disease	spread to community	prophylaxis or treatment	examples
1	unlikely	-	-	disabled <i>E. Coli</i>
2	potential	unlikely	available	Streptococcus
3	severe	potential	available	Hepatitis B
4	severe	likely	not available	Ebola

²healthy, no pregnancy, no allergy...

Choosing the containment level:

hazard group (pathogens)	containment level (laboratories)
1	1
2	2
3	3
4	4

Biological Agents Other Biological Substances

Cell lines:

Hazard	Cell line	Containment level
Low	Well characterised, authenticated cell lines of human or primate origin; low risk of endogenous infection with a biological agent presenting no apparent harm to laboratory; tested for the most serious pathogens.	CL1
Medium	Finite or continuous cell lines/strains of human or primate origin; not fully characterised or authenticated, except where there is a high risk of endogenous biological agents, e.g. blood-borne viruses.	CL2
High	Cell lines with endogenous biological agents or cells that have been deliberately infected.	Appropriate to the agent
	Primary cells from blood or lymphoid cells of human or simian origin.	Appropriate to the potential risk

Live animals

No animal facility in the department

Human tissue (surgical specimens or cadavers)

- Ethical approval required
- ► The department does not have permission to store human tissue samples under the Human Tissue Act 2004

Risk Assessment

What to do?

Risk assessment (RA) and CoSHH includes biological agents and/or in a biolab:

- You must fill an RA+CoSHH online form³
- 2. Forms sent to Biological Safety Officer for review
- 3. Forms sent to Local Safety Coordinator for review
- 4. Forms sent to Departmental Safety Officer for review

³https://safety.eng.cam.ac.uk/safe-working/risk-assessment-procedure

- ► GMO: organisms whose genes have been artificially altered to modify their characteristics
- ► Controls are set out in the "Genetically Modified Organisms (Contained Use) Regulations 2000"
- "Contained Use": limit contact between GMO and people or the environment. It relates to:
 - the actual process of genetic modification
 - ▶ the use, storage, transport & destruction of GMOs
- Need a specific, separate Risk Assessment made under the GMO (CU) Regulations 2000

Risk Assessment

Genetically Modified Organisms (GMO)

- ► For GM micro-organisms, the risk assessment must contain details about:
 - recipient micro-organism (hazard group, wild/disable, survival)
 - ▶ inserted gene (expression, action)
 - donor (species)
 - vector (viral, cellular, plasmid)
 - resulting GM micro-organisms
- Assess separately the risks for human health & safety and for environmental harm.
- Assign a provisional class & containment level:

Risk	Class (GM micro-organism)	Containment level (laboratories)
Negligible	1	1
Low	2	2
Moderate	3	3
High	4	4

- ► GMO Risk Assessment must be signed by:
 - You and your supervisor
 - BSO
- ► Only Class 1 work is allowed in the department
- We encourage users/supervisors to attend the training http://www.training.cam.ac.uk/ohss/ search "Risk Assessment of Genetically Modified Organisms" (runs regularly)
- ► HSE guidance can be found here: http://www.hse.gov.uk/biosafety/gmo/acgm/acgmcomp/

Proper Laboratory Practice Refresher

Hygiene

- No eating, no drinking, no applying cosmetic, no smoking. . .
- ► Always wear lab coat
- Avoid contamination of keyboards, telephone, door handles...
- Wash your hand before leaving the laboratory
- Remove laboratory coat before leaving (hung in the Biolab foyer)

Housekeeping

- ► Keep floor and benches tidy
- Keep floor and benches clean and disinfected
- ► All containers clearly labeled: content, user, date
- Do not leave unattended scalpels on benches; use sharp bins
- Waste container closed and marked
- Do not leave used glassware in the sinks: put it in the dishwasher (will be started by the technician once full)
- Some items need to be washed by hand: do it before you leave
- Clean balances and turn off after use

Proper Laboratory Practice Refresher

Instruments

Only use instruments you've been trained for

Ask the technician

If you find the instrument broken

Tell the technician immediately

If the instrument breaks

Tell the technician immediately

Containment

Containment Level 1 (CL1)

Equipment

- ► Impervious & resistant surfaces, easy to clean
- Autoclave on site

System of work

- No eating, drinking, smoking, etc.
- Door closed during work
- Observation window
- ► Protective clothing
- Disinfection available
- ► Minimize aerosol production

Waste

- Dedicated bins for contaminated solid waste
- ► Validated inactivation of liquid waste

Containment

Containment Level 2 (CL2)

Equipment

- ► Impervious & resistant surfaces, easy to clean
- Autoclave in the building
- Negative pressure if possible, microbiological safety cabinet

System of work

- No eating, drinking, smoking, etc.
- Door closed during work, access restricted
- Observation window, signage
- ► Side or back fastening lab coats, appropriate gloves, spill trays
- Disinfection available, specified decontimation procedures
- ► Minimize aerosol production, control aerosol dissemination
- ► Safe storage of biological agents
- Written record of staff training

Waste

- Dedicated bins for contaminated solid waste
- ► Validated inactivation of liquid waste

Containment Levels Microbiological Safety Cabinets

- Different from a fume hood (for hazardous chemicals)
- ► Requirement according to risk assessment (e.g. aerosols)
- ► Class II cabinet with HEPA⁴ filter protects worker and work

⁴High-Efficiency Particulate Air

credit: nuaire.com

Containment Levels

Department of Engineering - Trumpington site

- ► INO-03/07 Biolab 1 Inglis mezzanine: CL1+CL2
- ► ING-09/10 Biolab 2 via materials teaching lab: CL1
- ► INO-13/14, ISG-86 & ISG-75 Synthetic Biology lab: CL1+CL2
- ► ISG-84 Bioengineering teaching lab: CL1

- ▶ Bay 4 (including cell culture room): CL1
- ► Module 1: CL1

Electrical Engineering (EE) Building

► Room 292: CL1

Biomedical Campus (Addenbrooke's) - Clifford Allbutt Building

► Centre for Engineering Better Care (CEBC): CL1

Contaminated solid waste

- ► Dispose into dedicated clinical waste bins
- Do not tape clinical waste to benches
- Do not overfill
- Company (Novus Environmental) pick-up bins at the beginning of the month (first thursday)

credit: initial.co.uk

Contaminated sharps

- Must be placed in dedicated sharps bins
- Place pipette tips in provided puncture-proof containers
- Orange-lidded bins for blood (human or animal) contamination

credit: Hillcroft supplies

Sharps can be:

- Needles
- ▶ Blades eg scalpels, microtome blades
- Other (medical) instruments that could cause an injury by cutting/pricking the skin

Items such as glass coverslips, microscope slides, glass Pasteur pipettes can also be 'classed' as sharps, as can bone fragments.

DO NOT place any sharps into the general waste stream

Appropriate secure sharps disposal containers must be used and located close to the work area at a suitable height.

Safe use of sharps:

https://www.safety.admin.cam.ac.uk/system/files/hsd192b.pdf

Biological liquid waste

- Must be deactivated
 - ► Treat with an appropriate disinfectant (e.g. Chemgene)
 - ► Allow sufficient contact time (see manufacturer's guidelines)
- ► Dispose in an appropriate lab sink
- Flush down with copious amounts of water

Transport of hazardous substances should be minimized

- ► Internal transport (same building)
 - Minimum quantities
 - Secondary containment
 - Use (goods) lift if possible
- Transport between buildings
 - Sealed, leakproof primary container
 - Leakproof, closable secondary container
 - signage, list of content
- External transport
 - Highly regulated, extremely complicated
 - Talk to BSO

General procedure

- Evacuate area (if you can not assess the spill, large spills)
- BSO must assess the spill
- Ventilate area, allow aerosols to settle
- Contain, and apply disinfectant (e.g. Virkon powder)
- ► Clean up, fumigation may be needed
- ► Waste disposal
- ► Need permission for re-entry

- Bleed the wound and wash the area with soap and water
- Scrubbing should be avoided
- Cover the wound with a waterproof dressing
- Contamination on skin eye or mucous membranes should be washed immediately
- Seek advice on post-exposure prophylaxis
- ► Report the accident

Risk Assessments & Enquiries

Biological Safety in the Department of Engineering

BSO Thierry Savin

- email ts573@cam.ac.uk
- ▶ phone x32762
- ▶ office BE3-19

LSC (Engineering) Athina Markaki

email am253@cam.ac.uk

LSC (Nanoscience & EE) Sean Whelan

email sw349@cam.ac.uk

LSC (CEBC) Michael Sutcliffe

email mpfs1@cam.ac.uk

DSO Gary Steele

- email safety-office@eng.cam.ac.uk
- phone x32740
- ▶ office INO-18

Technician (Engineering) James Macleod

email rjm239@cam.ac.uk

Technician (Nanoscience) Agata Sibirska

email as2518@cam.ac.uk

References

- Safe biological practice at the University of Cambridge: https://www.safety.admin.cam.ac.uk/policies-and-guidance/biological-safety
- Biological Safety @CUED: https://safety.eng.cam.ac.uk/safe-working/biological-safety
- The Approved List of biological agents: http://www.hse.gov.uk/pubns/misc208.pdf